Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[BE14] Bui, A. and Ellis, G., The homology of \(SL_2(\mathbb Z[1/m])\) for small \(m\) , Journal of Algebra, 408 (2014), 102--108.

[Eic57] Eichler, M., Eine Verallgemeinerung der Abelschen Integrale , Mathematische Zeitschrift , 67 (1957), 267--298.

[KFM08] Kauffman, L. H. and Faria Martins, J., Invariants of welded virtual knots via crossed module invariants of knotted surfaces, Compos. Math., 144 (4) (2008), 1046--1080.

[Kso00] Ksontini, R., Proprietes homotopiques du complexe de Quillen du groupe symetrique, These de doctorat, Universitet de Lausanne (2000).

[Kul91] Kulkarni, R., An arithmetic-geometric method in the study of the subgroups of the modular group , American Journal of Mathematics , 113, No. 6 (1991), 1053--1133.

[Sat00] Satoh, S., Virtual knot presentation of ribbon torus-knots, J. Knot Theory Ramifications, 9 (4) (2000), 531--542.

[Shi59] Shimura, G., Sur les integrales attachees aux formes automorphes , Journal of the Mathematical Society of Japan , 67 (1959), 291--311.

[Ste07] Stein, W., Modular forms, a computational approach , AMS Graduate Studies in Mathematics , 79 (2007).

[Wie78] Wieser, G., Computational arithmetic of modular forms , Universitat Duisburg-Essen (2007/8).

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 Bib Ind

generated by GAPDoc2HTML