Bullet Collision Detection & Physics Library
btConvex2dConvex2dAlgorithm.cpp
Go to the documentation of this file.
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
17 
18 //#include <stdio.h>
24 
30 
35 
38 
40 
44 
46 {
47  m_simplexSolver = simplexSolver;
48  m_pdSolver = pdSolver;
49 }
50 
52 {
53 }
54 
55 btConvex2dConvex2dAlgorithm::btConvex2dConvex2dAlgorithm(btPersistentManifold* mf, const btCollisionAlgorithmConstructionInfo& ci, const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver, int /* numPerturbationIterations */, int /* minimumPointsPerturbationThreshold */)
56  : btActivatingCollisionAlgorithm(ci, body0Wrap, body1Wrap),
57  m_simplexSolver(simplexSolver),
58  m_pdSolver(pdSolver),
59  m_ownManifold(false),
60  m_manifoldPtr(mf),
61  m_lowLevelOfDetail(false)
62 {
63  (void)body0Wrap;
64  (void)body1Wrap;
65 }
66 
68 {
69  if (m_ownManifold)
70  {
71  if (m_manifoldPtr)
73  }
74 }
75 
77 {
78  m_lowLevelOfDetail = useLowLevel;
79 }
80 
82 
83 //
84 // Convex-Convex collision algorithm
85 //
87 {
88  if (!m_manifoldPtr)
89  {
90  //swapped?
92  m_ownManifold = true;
93  }
95 
96  //comment-out next line to test multi-contact generation
97  //resultOut->getPersistentManifold()->clearManifold();
98 
99  const btConvexShape* min0 = static_cast<const btConvexShape*>(body0Wrap->getCollisionShape());
100  const btConvexShape* min1 = static_cast<const btConvexShape*>(body1Wrap->getCollisionShape());
101 
102  btVector3 normalOnB;
103  btVector3 pointOnBWorld;
104 
105  {
107 
108  btGjkPairDetector gjkPairDetector(min0, min1, m_simplexSolver, m_pdSolver);
109  //TODO: if (dispatchInfo.m_useContinuous)
110  gjkPairDetector.setMinkowskiA(min0);
111  gjkPairDetector.setMinkowskiB(min1);
112 
113  {
116  }
117 
118  input.m_transformA = body0Wrap->getWorldTransform();
119  input.m_transformB = body1Wrap->getWorldTransform();
120 
121  gjkPairDetector.getClosestPoints(input, *resultOut, dispatchInfo.m_debugDraw);
122 
123  btVector3 v0, v1;
124  btVector3 sepNormalWorldSpace;
125  }
126 
127  if (m_ownManifold)
128  {
129  resultOut->refreshContactPoints();
130  }
131 }
132 
134 {
135  (void)resultOut;
136  (void)dispatchInfo;
138 
141  btScalar resultFraction = btScalar(1.);
142 
143  btScalar squareMot0 = (col0->getInterpolationWorldTransform().getOrigin() - col0->getWorldTransform().getOrigin()).length2();
144  btScalar squareMot1 = (col1->getInterpolationWorldTransform().getOrigin() - col1->getWorldTransform().getOrigin()).length2();
145 
146  if (squareMot0 < col0->getCcdSquareMotionThreshold() &&
147  squareMot1 < col1->getCcdSquareMotionThreshold())
148  return resultFraction;
149 
150  //An adhoc way of testing the Continuous Collision Detection algorithms
151  //One object is approximated as a sphere, to simplify things
152  //Starting in penetration should report no time of impact
153  //For proper CCD, better accuracy and handling of 'allowed' penetration should be added
154  //also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies)
155 
157  {
158  btConvexShape* convex0 = static_cast<btConvexShape*>(col0->getCollisionShape());
159 
160  btSphereShape sphere1(col1->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
162  btVoronoiSimplexSolver voronoiSimplex;
163  //SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
165  btGjkConvexCast ccd1(convex0, &sphere1, &voronoiSimplex);
166  //ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
168  col1->getWorldTransform(), col1->getInterpolationWorldTransform(), result))
169  {
170  //store result.m_fraction in both bodies
171 
172  if (col0->getHitFraction() > result.m_fraction)
173  col0->setHitFraction(result.m_fraction);
174 
175  if (col1->getHitFraction() > result.m_fraction)
176  col1->setHitFraction(result.m_fraction);
177 
178  if (resultFraction > result.m_fraction)
179  resultFraction = result.m_fraction;
180  }
181  }
182 
184  {
185  btConvexShape* convex1 = static_cast<btConvexShape*>(col1->getCollisionShape());
186 
187  btSphereShape sphere0(col0->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
189  btVoronoiSimplexSolver voronoiSimplex;
190  //SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
192  btGjkConvexCast ccd1(&sphere0, convex1, &voronoiSimplex);
193  //ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
195  col1->getWorldTransform(), col1->getInterpolationWorldTransform(), result))
196  {
197  //store result.m_fraction in both bodies
198 
199  if (col0->getHitFraction() > result.m_fraction)
200  col0->setHitFraction(result.m_fraction);
201 
202  if (col1->getHitFraction() > result.m_fraction)
203  col1->setHitFraction(result.m_fraction);
204 
205  if (resultFraction > result.m_fraction)
206  resultFraction = result.m_fraction;
207  }
208  }
209 
210  return resultFraction;
211 }
btScalar gContactBreakingThreshold
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
#define btSimplexSolverInterface
This class is not enabled yet (work-in-progress) to more aggressively activate objects.
btCollisionObject can be used to manage collision detection objects.
const btTransform & getInterpolationWorldTransform() const
btScalar getHitFraction() const
btTransform & getWorldTransform()
void setHitFraction(btScalar hitFraction)
btScalar getCcdSquareMotionThreshold() const
const btCollisionShape * getCollisionShape() const
btScalar getCcdSweptSphereRadius() const
Swept sphere radius (0.0 by default), see btConvexConvexAlgorithm::
btConvexPenetrationDepthSolver * m_pdSolver
virtual btScalar calculateTimeOfImpact(btCollisionObject *body0, btCollisionObject *body1, const btDispatcherInfo &dispatchInfo, btManifoldResult *resultOut)
btConvex2dConvex2dAlgorithm(btPersistentManifold *mf, const btCollisionAlgorithmConstructionInfo &ci, const btCollisionObjectWrapper *body0Wrap, const btCollisionObjectWrapper *body1Wrap, btSimplexSolverInterface *simplexSolver, btConvexPenetrationDepthSolver *pdSolver, int numPerturbationIterations, int minimumPointsPerturbationThreshold)
virtual void processCollision(const btCollisionObjectWrapper *body0Wrap, const btCollisionObjectWrapper *body1Wrap, const btDispatcherInfo &dispatchInfo, btManifoldResult *resultOut)
btSimplexSolverInterface * m_simplexSolver
ConvexPenetrationDepthSolver provides an interface for penetration depth calculation.
The btConvexShape is an abstract shape interface, implemented by all convex shapes such as btBoxShape...
Definition: btConvexShape.h:33
virtual btScalar getMargin() const =0
virtual void releaseManifold(btPersistentManifold *manifold)=0
virtual btPersistentManifold * getNewManifold(const btCollisionObject *b0, const btCollisionObject *b1)=0
GjkConvexCast performs a raycast on a convex object using support mapping.
virtual bool calcTimeOfImpact(const btTransform &fromA, const btTransform &toA, const btTransform &fromB, const btTransform &toB, CastResult &result)
cast a convex against another convex object
btGjkPairDetector uses GJK to implement the btDiscreteCollisionDetectorInterface
virtual void getClosestPoints(const ClosestPointInput &input, Result &output, class btIDebugDraw *debugDraw, bool swapResults=false)
void setMinkowskiA(const btConvexShape *minkA)
void setMinkowskiB(const btConvexShape *minkB)
btManifoldResult is a helper class to manage contact results.
void setPersistentManifold(btPersistentManifold *manifoldPtr)
btPersistentManifold is a contact point cache, it stays persistent as long as objects are overlapping...
btScalar getContactBreakingThreshold() const
The btSphereShape implements an implicit sphere, centered around a local origin with radius.
Definition: btSphereShape.h:25
btVector3 & getOrigin()
Return the origin vector translation.
Definition: btTransform.h:113
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:82
btVoronoiSimplexSolver is an implementation of the closest point distance algorithm from a 1-4 points...
const btCollisionShape * getCollisionShape() const
const btCollisionObject * getCollisionObject() const
const btTransform & getWorldTransform() const
CreateFunc(btSimplexSolverInterface *simplexSolver, btConvexPenetrationDepthSolver *pdSolver)
RayResult stores the closest result alternatively, add a callback method to decide about closest/all ...
Definition: btConvexCast.h:47
class btIDebugDraw * m_debugDraw
Definition: btDispatcher.h:58