Bullet Collision Detection & Physics Library
btSequentialImpulseConstraintSolver.h
Go to the documentation of this file.
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #ifndef BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
17 #define BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
18 
19 class btIDebugDraw;
21 class btDispatcher;
22 class btCollisionObject;
29 
31 
33 {
35  {
36  m_numSolverCalls = 0;
39  m_islandId = -2;
40  }
47 };
48 
52 {
53 
54 
55 protected:
61 
68  // When running solvers on multiple threads, a race condition exists for Kinematic objects that
69  // participate in more than one solver.
70  // The getOrInitSolverBody() function writes the companionId of each body (storing the index of the solver body
71  // for the current solver). For normal dynamic bodies it isn't an issue because they can only be in one island
72  // (and therefore one thread) at a time. But kinematic bodies can be in multiple islands at once.
73  // To avoid this race condition, this solver does not write the companionId, instead it stores the solver body
74  // index in this solver-local table, indexed by the uniqueId of the body.
76 
80  int m_cachedSolverMode; // used to check if SOLVER_SIMD flag has been changed
81  void setupSolverFunctions(bool useSimd);
82 
84 
85  void setupFrictionConstraint(btSolverConstraint & solverConstraint, const btVector3& normalAxis, int solverBodyIdA, int solverBodyIdB,
86  btManifoldPoint& cp, const btVector3& rel_pos1, const btVector3& rel_pos2,
87  btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation,
88  const btContactSolverInfo& infoGlobal,
89  btScalar desiredVelocity = 0., btScalar cfmSlip = 0.);
90 
91  void setupTorsionalFrictionConstraint(btSolverConstraint & solverConstraint, const btVector3& normalAxis, int solverBodyIdA, int solverBodyIdB,
92  btManifoldPoint& cp, btScalar combinedTorsionalFriction, const btVector3& rel_pos1, const btVector3& rel_pos2,
93  btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation,
94  btScalar desiredVelocity = 0., btScalar cfmSlip = 0.);
95 
96  btSolverConstraint& addFrictionConstraint(const btVector3& normalAxis, int solverBodyIdA, int solverBodyIdB, int frictionIndex, btManifoldPoint& cp, const btVector3& rel_pos1, const btVector3& rel_pos2, btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity = 0., btScalar cfmSlip = 0.);
97  btSolverConstraint& addTorsionalFrictionConstraint(const btVector3& normalAxis, int solverBodyIdA, int solverBodyIdB, int frictionIndex, btManifoldPoint& cp, btScalar torsionalFriction, const btVector3& rel_pos1, const btVector3& rel_pos2, btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity = 0, btScalar cfmSlip = 0.f);
98 
99  void setupContactConstraint(btSolverConstraint & solverConstraint, int solverBodyIdA, int solverBodyIdB, btManifoldPoint& cp,
100  const btContactSolverInfo& infoGlobal, btScalar& relaxation, const btVector3& rel_pos1, const btVector3& rel_pos2);
101 
102  static void applyAnisotropicFriction(btCollisionObject * colObj, btVector3 & frictionDirection, int frictionMode);
103 
104  void setFrictionConstraintImpulse(btSolverConstraint & solverConstraint, int solverBodyIdA, int solverBodyIdB,
105  btManifoldPoint& cp, const btContactSolverInfo& infoGlobal);
106 
108  unsigned long m_btSeed2;
109 
110  btScalar restitutionCurve(btScalar rel_vel, btScalar restitution, btScalar velocityThreshold);
111 
112  virtual void convertContacts(btPersistentManifold * *manifoldPtr, int numManifolds, const btContactSolverInfo& infoGlobal);
113 
114  void convertContact(btPersistentManifold * manifold, const btContactSolverInfo& infoGlobal);
115 
116  virtual void convertJoints(btTypedConstraint * *constraints, int numConstraints, const btContactSolverInfo& infoGlobal);
117  void convertJoint(btSolverConstraint * currentConstraintRow, btTypedConstraint * constraint, const btTypedConstraint::btConstraintInfo1& info1, int solverBodyIdA, int solverBodyIdB, const btContactSolverInfo& infoGlobal);
118 
119  virtual void convertBodies(btCollisionObject * *bodies, int numBodies, const btContactSolverInfo& infoGlobal);
120 
122  {
123  return m_resolveSplitPenetrationImpulse(bodyA, bodyB, contactConstraint);
124  }
125 
127  {
128  return m_resolveSplitPenetrationImpulse(bodyA, bodyB, contactConstraint);
129  }
130 
131  //internal method
132  int getOrInitSolverBody(btCollisionObject & body, btScalar timeStep);
133  void initSolverBody(btSolverBody * solverBody, btCollisionObject * collisionObject, btScalar timeStep);
134 
135  btScalar resolveSingleConstraintRowGeneric(btSolverBody & bodyA, btSolverBody & bodyB, const btSolverConstraint& contactConstraint);
136  btScalar resolveSingleConstraintRowGenericSIMD(btSolverBody & bodyA, btSolverBody & bodyB, const btSolverConstraint& contactConstraint);
137  btScalar resolveSingleConstraintRowLowerLimit(btSolverBody & bodyA, btSolverBody & bodyB, const btSolverConstraint& contactConstraint);
138  btScalar resolveSingleConstraintRowLowerLimitSIMD(btSolverBody & bodyA, btSolverBody & bodyB, const btSolverConstraint& contactConstraint);
140  {
141  return m_resolveSplitPenetrationImpulse(bodyA, bodyB, contactConstraint);
142  }
143 
144 protected:
145  void writeBackContacts(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
146  void writeBackJoints(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
147  void writeBackBodies(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
148  virtual void solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
149  virtual btScalar solveGroupCacheFriendlyFinish(btCollisionObject * *bodies, int numBodies, const btContactSolverInfo& infoGlobal);
150  virtual btScalar solveSingleIteration(int iteration, btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
151 
152  virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
153  virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
154 
155 public:
157 
160 
161  virtual btScalar solveGroup(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifold, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer, btDispatcher* dispatcher);
162 
164  virtual void reset();
165 
166  unsigned long btRand2();
167 
168  int btRandInt2(int n);
169 
170  void setRandSeed(unsigned long seed)
171  {
172  m_btSeed2 = seed;
173  }
174  unsigned long getRandSeed() const
175  {
176  return m_btSeed2;
177  }
178 
180  {
182  }
183 
185  {
186  return m_resolveSingleConstraintRowGeneric;
187  }
189  {
190  m_resolveSingleConstraintRowGeneric = rowSolver;
191  }
193  {
194  return m_resolveSingleConstraintRowLowerLimit;
195  }
197  {
198  m_resolveSingleConstraintRowLowerLimit = rowSolver;
199  }
200 
201 
202 
204  btSingleConstraintRowSolver getScalarConstraintRowSolverGeneric();
207 
209  btSingleConstraintRowSolver getScalarConstraintRowSolverLowerLimit();
213 };
214 
215 #endif //BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
btConstraintSolverType
btConstraintSolver provides solver interface
@ BT_SEQUENTIAL_IMPULSE_SOLVER
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
#define ATTRIBUTE_ALIGNED16(a)
Definition: btScalar.h:99
btScalar(* btSingleConstraintRowSolver)(btSolverBody &, btSolverBody &, const btSolverConstraint &)
static unsigned long seed
Definition: btSoftBody.h:39
btCollisionObject can be used to manage collision detection objects.
The btDispatcher interface class can be used in combination with broadphase to dispatch calculations ...
Definition: btDispatcher.h:77
The btIDebugDraw interface class allows hooking up a debug renderer to visually debug simulations.
Definition: btIDebugDraw.h:27
ManifoldContactPoint collects and maintains persistent contactpoints.
btPersistentManifold is a contact point cache, it stays persistent as long as objects are overlapping...
The btSequentialImpulseConstraintSolver is a fast SIMD implementation of the Projected Gauss Seidel (...
btSingleConstraintRowSolver getSSE2ConstraintRowSolverGeneric()
btSingleConstraintRowSolver getActiveConstraintRowSolverLowerLimit()
btSingleConstraintRowSolver getActiveConstraintRowSolverGeneric()
virtual btConstraintSolverType getSolverType() const
btScalar resolveSplitPenetrationSIMD(btSolverBody &bodyA, btSolverBody &bodyB, const btSolverConstraint &contactConstraint)
unsigned long m_btSeed2
m_btSeed2 is used for re-arranging the constraint rows. improves convergence/quality of friction
btSingleConstraintRowSolver getSSE2ConstraintRowSolverLowerLimit()
btAlignedObjectArray< btSolverBody > m_tmpSolverBodyPool
btSingleConstraintRowSolver m_resolveSingleConstraintRowLowerLimit
btAlignedObjectArray< btTypedConstraint::btConstraintInfo1 > m_tmpConstraintSizesPool
btSingleConstraintRowSolver getSSE4_1ConstraintRowSolverGeneric()
void setConstraintRowSolverGeneric(btSingleConstraintRowSolver rowSolver)
btAlignedObjectArray< int > m_kinematicBodyUniqueIdToSolverBodyTable
btSingleConstraintRowSolver m_resolveSingleConstraintRowGeneric
btScalar resolveSplitPenetrationImpulseCacheFriendly(btSolverBody &bodyA, btSolverBody &bodyB, const btSolverConstraint &contactConstraint)
void setConstraintRowSolverLowerLimit(btSingleConstraintRowSolver rowSolver)
btSingleConstraintRowSolver getSSE4_1ConstraintRowSolverLowerLimit()
btScalar resolveSplitPenetrationImpulse(btSolverBody &bodyA, btSolverBody &bodyB, const btSolverConstraint &contactConstraint)
TypedConstraint is the baseclass for Bullet constraints and vehicles.
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:82
The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packe...
Definition: btSolverBody.h:105
1D constraint along a normal axis between bodyA and bodyB. It can be combined to solve contact and fr...